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ABSTRACT: Efficient crowd analytics is essential for public safety, event monitoring, and urban planning, where 
timely detection and density estimation can mitigate risks and improve resource allocation. Traditional methods often 
fail under real-world conditions involving occlusion, varying illumination, and perspective distortion. Recent advances 
in deep learning-based object detection provide scalable, real-time solutions for such challenges. This study presents a 
comparative evaluation of three state-of-the-art architectures—Faster R-CNN, YOLOv4, and Single Shot Multi-box 
Detector (SSD)—for real-time crowd analytics. Experiments were conducted on the ShanghaiTech Crowd Counting 
Dataset and a custom in-house dataset featuring diverse densities, lighting conditions, and motion patterns. Models 
were fine-tuned from COCO-pre trained weights, with pre-processing, data augmentation, and anchor box optimization 
tailored for dense scenes. Performance was assessed using mean average precision (mAP), precision, recall, F1-score, 
mean absolute error (MAE), mean squared error (MSE), and inference speed (FPS).Results indicate that YOLOv4 
achieved the best overall performance, exceeding 90% mAP with the lowest MAE/MSE and the highest FPS (>40), 
making it ideal for high-density, real-time applications. SSD provided a strong balance between accuracy and speed, 
while Faster R-CNN offered high precision but lower recall and speed, making it better suited for offline analytics. 
These findings underscore the importance of model selection based on operational constraints and highlight avenues for 
improvement, including lightweight architectures, attention mechanisms, and spatial-temporal modelling for robust 
deployment in smart city and public safety systems. 
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I. INTRODUCTION 

 

The rapid urbanization of the 21st century has led to an unprecedented concentration of people in metropolitan areas, 
resulting in frequent high-density gatherings in venues such as transport hubs, sports arenas, concert venues, and 
religious events. In these scenarios, real-time crowd analytics has become an essential tool for ensuring public safety, 
optimizing event management, and enabling efficient urban planning. The ability to accurately estimate crowd size, 
monitor movement patterns, and detect anomalies in real time is not only critical for disaster prevention but also for 
improving the overall quality of public infrastructure and services [1], [2]. 
 

Traditional crowd counting and monitoring approaches—such as manual counting, visual inspection, and classical 
computer vision methods based on handcrafted features—struggle to cope with the challenges of real-world 
environments. Factors such as occlusion, perspective distortion, illumination variation, and non-uniform crowd 
distribution significantly degrade their accuracy and reliability [3], [4]. Moreover, these conventional methods lack 
scalability and adaptability to diverse crowd scenes, making them unsuitable for large-scale, dynamic deployments in 
smart city ecosystems. 
 

The evolution of deep learning and computer vision has significantly transformed crowd analytics. State-of-the-art 
object detection architectures, including Faster R-CNN [5], You Only Look Once (YOLO) [6], and Single Shot Multi-
box Detector (SSD) [7], have demonstrated remarkable success in detecting and localizing individuals in both still 
images and live video feeds. By leveraging convolutional neural networks (CNNs) for hierarchical feature extraction, 
these models outperform traditional density regression or background subtraction methods by providing precise 
bounding boxes and confidence scores for each detected individual. This feature-rich output facilitates downstream 
tasks such as behavior recognition, anomaly detection, and spatiotemporal pattern analysis [8], [9]. 
 

Real-time performance is particularly important for operational scenarios such as crowd control during public events, 
emergency evacuation planning, and traffic management. Models like YOLO, with its single-stage detection pipeline, 
excel in achieving high-speed inference without significantly compromising accuracy, making them ideal for latency-

sensitive applications [6], [10]. SSD strikes a balance between computational cost and detection performance, while 
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Faster R-CNN, although computationally heavier, delivers high precision in controlled or moderately dense settings [5], 
[11]. 
 

Despite these advances, critical challenges persist. Extreme crowd densities cause severe occlusions, overlapping 
human silhouettes, and scale variations, which negatively affect detection accuracy [12]. Low-light conditions, 
environmental noise, and camera motion further degrade performance. Additionally, the lack of large, diverse, and well-
annotated datasets limits the generalizability of models across different geographic, cultural, and infrastructural 
contexts [13]. Researchers have explored domain adaptation, synthetic data generation, and attention mechanisms to 
address these challenges, yet real-world deployment at scale remains a non-trivial problem [14], [15]. 
 

In this research, we present a comparative evaluation of Faster R-CNN, YOLO, and SSD for real-time crowd analytics 
using both the ShanghaiTech dataset [16] and a custom in-house dataset collected from public gatherings, urban streets, 
and event venues. The study assesses each model’s performance across key evaluation metrics such as Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Precision, Recall, and F1-score. Our analysis combines quantitative 
benchmarking with qualitative visual assessments to provide a comprehensive understanding of each model’s strengths, 
limitations, and suitability for real-world applications. 
 

The insights from this work aim to bridge the gap between theoretical advances in deep object detection and practical 
crowd monitoring needs, offering actionable recommendations for deploying robust, real-time crowd analytics systems 
in smart cities, transportation hubs, and high-density public events. 
 

II. LITERATURE REVIEW 

 

Crowd counting and analytics have been an active research area for over two decades due to their applications in public 
safety, transportation management, event organization, and smart city development. Early approaches primarily relied 
on manual observation and classical image processing techniques using handcrafted features such as edge detection, 
texture descriptors, and motion analysis [1], [2]. While these methods were computationally inexpensive, they 
performed poorly under real-world challenges such as dense crowds, occlusion, illumination changes, and non-uniform 
crowd distribution. 
 

1. Early Density Estimation and Regression-Based Approaches 

Lempitsky and Zisserman [3] pioneered a density estimation method that learned a mapping between local features and 
crowd density maps. Chan et al. [4] proposed a method based on multi-column cell histograms for privacy-preserving 
crowd counting without explicit detection. These early methods formed the basis for non-detection-based crowd 
analytics but suffered from limited scalability and robustness under occlusion and perspective distortion. Later works 
such as Idrees et al. [5] integrated multiple visual cues, including texture, edge features, and motion patterns, to 
improve counting accuracy in complex scenes. 
 

2. Traditional Machine Learning-Based Object Detection 

Before the deep learning era, object detection for crowd analysis was often implemented using Haar cascades, HOG 
descriptors, and SVM classifiers [6]. While these models could detect individuals in low-density settings, their 
performance dropped significantly in dense and cluttered environments. The inability to handle significant scale 
variation and occlusion hindered their deployment in real-time crowd monitoring systems. 
 

3. Deep Learning-Based Crowd Counting 

The introduction of Convolutional Neural Networks (CNNs) revolutionized the field. Deep learning approaches can be 
broadly categorized into: 
 

Density Map Regression Networks – Zhang et al. [7] introduced the Multi-Column Convolutional Neural Network 
(MCNN), which used multiple receptive fields to handle scale variations. Subsequent works like CSRNet [8] improved 
accuracy using dilated convolutions to preserve spatial information. 
 

Object Detection-Based Methods – Models such as Faster R-CNN [9], YOLO [10], and SSD [11] have been applied to 
crowd counting tasks due to their ability to detect and localize individuals. Faster R-CNN offers high accuracy by 
combining a Region Proposal Network (RPN) with a detection network, while YOLO’s single-stage architecture 
enables real-time performance. SSD balances accuracy and speed by detecting objects at multiple scales. 
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4. Comparative Evaluations of Detection Models 

Several studies have benchmarked these models for crowd analytics. Wang et al. [12] found YOLO to outperform 
Faster R-CNN in high-speed crowd surveillance, though Faster R-CNN retained an advantage in precise localization 
under moderate crowd densities. Ma et al. [13] proposed an Adaptive SSD variant to improve performance in 
occlusion-heavy scenes. However, both YOLO and SSD face challenges in extremely dense crowds where individuals 
occupy minimal pixel space. 
 

5. Handling Occlusion, Perspective, and Scale 

Occlusion and scale variation remain key challenges. Attention-based mechanisms such as the Scale-Aware Attention 
Network (SAANet) [14] dynamically focus on informative features, improving detection under crowded conditions. 
Graph-based spatial reasoning [15] and transformer-based architectures [16] have also been proposed to model 
contextual relationships between individuals, enhancing robustness in dense scenes. 
 

6. Dataset Limitations and Domain Adaptation 

A major bottleneck in deep learning-based crowd counting is the lack of diverse, large-scale annotated datasets. The 
ShanghaiTech dataset [17] and UCF-QNRF [18] are widely used benchmarks, but models trained on these datasets 
often struggle to generalize to new environments. To address this, researchers have explored domain adaptation 
techniques [19], synthetic dataset generation [20], and data augmentation strategies to improve cross-scene 
performance. 
 

7. Real-Time and Edge Deployment 
Real-time crowd analytics in resource-constrained environments requires model optimization. Techniques such as 
quantization, model pruning, and knowledge distillation have been applied to YOLO and SSD for deployment on edge 
devices [21]. Lightweight architectures such as YOLOv5-Nano and MobileNet-SSD offer feasible trade-offs for on-site 
crowd monitoring with reduced latency. 
 

8. Explain ability and Ethical Considerations 

As crowd analytics is increasingly used in public safety and surveillance, explainable AI (XAI) approaches are gaining 
importance. Zhang et al. [22] proposed explainable density maps and attention heat maps to visualize model decision-

making, enhancing transparency and trust. Ethical frameworks addressing privacy preservation and data security are 
also becoming critical for real-world adoption. 
 

The literature shows a clear trajectory from handcrafted feature-based methods to deep learning-based architectures that 
excel in accuracy and robustness. While YOLO, SSD, and Faster R-CNN are the leading object detection models in 
real-time crowd analytics, their effectiveness depends on environmental conditions, density levels, and computational 
constraints. Current research trends emphasize occlusion handling, cross-domain adaptation, and lightweight 
deployment, pointing toward an integrated future where accuracy, speed, and ethical compliance are balanced for 
optimal crowd monitoring solutions. 
 

III. METHODOLOGY 

 

The proposed study adopts a comparative experimental framework to evaluate the performance of three state-of-the-art 
deep object detection models—Faster R-CNN [1], You Only Look Once (YOLO) [2], and Single Shot Multibox 
Detector (SSD) [3]—for real-time crowd analytics. The process begins with dataset selection and preparation, where 
two diverse datasets are employed. The first is the benchmark ShanghaiTech Crowd Counting Dataset [4], which 
contains high-resolution images with significant scale variation, occlusion, and perspective distortion. Part A comprises 
images from internet sources representing high-density crowds, while Part B contains urban street scenes depicting 
moderate densities. The second dataset is a custom in-house collection captured via high-definition CCTV and 
handheld cameras from urban streets, event venues, and public gatherings. This dataset introduces variation in lighting 
conditions (day, night, indoor, outdoor), multiple crowd densities, and dynamic crowd motion, with annotations stored 
in Pascal VOC XML and COCO JSON formats. Using both datasets ensures that the evaluation encompasses both 
controlled benchmarks and unconstrained real-world conditions. 
 

In the data pre-processing phase, images are resized to match each model’s architectural input (416×416 px for YOLO, 
300×300 px for SSD, and 600×600 px for Faster R-CNN) and normalized to a pixel range of [0, 1] to maintain 
consistent gradient magnitudes during training. Data augmentation techniques—including horizontal flipping, random 
brightness and contrast adjustments, Gaussian noise injection, and random cropping while preserving aspect ratio—are 
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applied to improve model generalization. Annotation integrity is verified to ensure bounding box consistency. 
Preprocessing is implemented using OpenCV and Albumentations for reproducibility and efficiency. 
 

The model architecture and adaptation stage tunes each detector for dense crowd scenarios. Faster R-CNN uses a 
ResNet-50 backbone with a Feature Pyramid Network (FPN), a Region Proposal Network generating ~300 proposals 
per image, and anchor sizes optimized for small object detection, trained in PyTorch Detectron2. YOLOv4 adopts a 
CSPDarknet-53 backbone with three-scale detection heads, anchor boxes from k-means clustering, and CIoU plus BCE 
loss, trained using the Darknet framework. SSD employs a VGG-16 backbone with multi-scale detection from several 
feature maps, tuned anchor ratios for pedestrian detection, and multibox loss, trained in the TensorFlow Object 
Detection API. 
 

Training is performed on an NVIDIA RTX 3090 GPU with 64 GB RAM, using SGD with momentum for Faster R-

CNN and SSD, and Adam for YOLO. All models start from COCO pre-trained weights and are fine-tuned on the crowd 
datasets. Early stopping based on validation loss prevents overfitting. 
 

Evaluation uses accuracy-based metrics—mAP at IoU = 0.5, precision, recall, and F1-score—and error-based 
metrics—MAE and MSE—to assess both detection quality and count accuracy. The workflow follows a logical 
sequence: data acquisition, preprocessing and augmentation, model initialization with pre-trained weights, fine-tuning 
on crowd datasets, validation and hyperparameter tuning, performance evaluation, and comparative analysis with 
visualization. 
 

In the post-processing phase, non-maximum suppression with an IoU threshold of 0.45 removes duplicate detections, 
while confidence thresholding (0.3 for YOLO and SSD, 0.5 for Faster R-CNN) filters out low-confidence predictions. 
A counting algorithm then converts per-frame detections into real-time crowd density estimates. The entire pipeline is 
implemented in Python 3.9 with CUDA 11.6 and cuDNN 8.4, leveraging PyTorch, TensorFlow, and Darknet for deep 
learning, and Matplotlib, Seaborn, and OpenCV for visualization of results. This structured methodology ensures a fair, 
repeatable, and comprehensive comparison of the selected deep object detection models in real-time crowd analysis 
contexts 

 

Table 1 — Methodology Overview for Crowd Detection Models 

 

Step Description Technical Details / Parameters 

1. Dataset Selection 
& Preparation 

Two datasets used for 
diversity in scenarios: 
benchmark and real-
world. 

ShanghaiTech Crowd Counting Dataset [4]:• Part A – High-density 
internet-sourced images.• Part B – Moderate-density urban street 
images.Custom In-House Dataset:• Collected via CCTV & handheld 
cameras.• Variations in lighting (day/night, indoor/outdoor), density 
(low/medium/high), and motion (static/moving).• Annotations: Pascal 
VOC XML & COCO JSON. 

2. Data Pre-

processing 

Standardizes inputs 
for model 
compatibility and 
improves robustness. 

• Resizing: YOLO (416×416 px), SSD (300×300 px), Faster R-CNN 
(600×600 px).• Normalization: Pixel values scaled to [0, 1].• 
Augmentation: Horizontal flips, ±20% brightness/contrast change, 
Gaussian noise (σ=0.01), random cropping.• Annotation validation for 
bounding box consistency.• Implemented with OpenCV & 
Albumentations. 

3. Model 
Architectures & 
Adaptations 

Tailoring models for 
dense crowd detection 
while maintaining 
speed. 

Faster R-CNN:• Backbone: ResNet-50 + FPN.• ~300 RPN 
proposals/image, anchors [16, 32, 64, 128] px.• Loss: Cross-entropy + 
Smooth L1.• LR=0.002, momentum=0.9, batch=4, epochs=50.• 
PyTorch Detectron2.YOLOv4:• Backbone: CSPDarknet-53.• 3-scale 
detection, anchors via k-means.• Loss: CIoU + BCE.• LR=0.001 
cosine annealing, batch=16, epochs=100.• Darknet + CUDA.SSD:• 
Backbone: VGG-16.• Multi-scale detection (conv4_3, conv7, 
conv8_2).• Loss: Multibox.• LR=0.001 step decay, batch=8, 
epochs=80.• TensorFlow API. 

4. Training Strategy Ensures fairness and 
convergence stability. 

• Hardware: NVIDIA RTX 3090 (24GB), 64GB RAM, Ubuntu 20.04.• 
Optimizers: SGD (Faster R-CNN, SSD), Adam (YOLO).• 
Initialization: COCO pre-trained weights.• Early stopping on 
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validation loss. 
5. Evaluation 
Metrics 

Assess detection 
accuracy and crowd 
count error. 

• mAP @ IoU=0.5.• Precision, Recall, F1-score.• MAE = ( 
\frac{1}{N} \sum 

6. Workflow Sequential experiment 
stages. 

Data Acquisition → Preprocessing & Augmentation → Model 
Initialization (COCO pre-trained) → Fine-tuning → Validation & 
Tuning → Performance Evaluation → Comparative Analysis & 
Visualization. 

7. Post-Processing Refines detection 
outputs and generates 
crowd counts. 

• Non-Maximum Suppression (IoU=0.45).• Confidence Threshold: 0.3 
(YOLO, SSD), 0.5 (Faster R-CNN).• Counting algorithm for per-frame 
density estimation. 

8.Implementation 
Environment 

Software and tools for 
reproducibility. 

• Python 3.9, CUDA 11.6, cuDNN 8.4.• Frameworks: PyTorch 1.12, 
TensorFlow 2.8, Darknet.• Visualization: Matplotlib, Seaborn, 
OpenCV. 

 

IV. EXPERIMENTAL RESULTS 

 

The proposed experimental setup evaluated the performance of three deep object detection models—Faster R-CNN, 
YOLOv4, and SSD—on two datasets: the ShanghaiTech Crowd Counting Dataset (Parts A and B) and a Custom In-

House Dataset representing real-world urban and event-based crowd scenes. All experiments were conducted under 
identical hardware and software conditions to ensure fairness in comparison. The results are presented in terms of 
accuracy-based metrics (mAP, Precision, Recall, F1-score) and error-based metrics (MAE, MSE), complemented by 
qualitative visual assessments of detection outputs. 
 

Experimental Results and Performance Analysis: The comparative evaluation of Faster R-CNN, YOLOv4, and SSD 
across the ShanghaiTech and custom in-house datasets revealed distinct performance trends in terms of detection 
accuracy, error rates, and inference speed. YOLOv4 consistently achieved the highest mAP, precision, recall, and F1-

scores on both datasets, while also maintaining the lowest MAE and MSE values. These results confirm its suitability 
for real-time, high-density crowd monitoring. SSD demonstrated competitive performance, offering a balanced trade-

off between detection speed and accuracy, particularly excelling in moderate-density crowd scenes. Faster R-CNN, 
while delivering strong precision, exhibited lower recall, indicating occasional missed detections in heavily occluded or 
highly dynamic environments. 
 

Performance Across Crowd Density Levels: Further stratification of results based on low, medium, and high-density 
crowd categories—determined from ground-truth counts—revealed additional insights. In low-density scenes, all 
models performed comparably, with mAP values exceeding 88%. In medium-density environments, YOLOv4 and SSD 
maintained high recall, whereas Faster R-CNN occasionally missed small or distant subjects. In high-density scenarios, 
YOLOv4 clearly outperformed both competitors, benefiting from its multi-scale feature extraction and optimized 
anchor clustering. 
 

Inference Speed and Real-Time Suitability: Inference speed, measured on an NVIDIA RTX 3090 GPU, showed 
YOLOv4 as the fastest model, achieving 43.5 FPS on the ShanghaiTech dataset and 41.9 FPS on the custom dataset. 
SSD followed closely with 34.7 FPS and 33.8 FPS, respectively. Faster R-CNN achieved significantly lower speeds—
11.2 FPS and 10.8 FPS—making it better suited for offline analytics rather than live surveillance applications. 
 

Qualitative Observations: Representative detection outputs reveal that YOLOv4 produced clean bounding boxes even 
under challenging lighting and severe occlusion, with minimal false positives. SSD excelled in medium-density scenes 
but occasionally failed to detect individuals in extremely dense clusters. Faster R-CNN generated precise bounding 
boxes in structured and static environments but struggled with moving crowds and overlapping subjects. 
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Table 2: Performance Comparison of Crowd Detection Models on Benchmark and Custom Datasets 

 

 

Error Distribution Trends: Error analysis further highlighted that YOLOv4’s deviations were primarily concentrated in 
extreme density cases (>400 individuals per frame) but remained relatively low. SSD exhibited a broader error spread, 
particularly in scenes with rapid crowd movement. Faster R-CNN showed fewer false positives but more false 
negatives, especially for distant subjects, impacting its recall in wide-area crowd monitoring tasks. 
 

Overall, the findings affirm YOLOv4’s dominance for real-time, high-density scenarios, SSD’s suitability for balanced-

speed applications, and Faster R-CNN’s relevance for precise offline analysis. 
 

 
 

Figure 1: Performance comparison of Faster R-CNN, YOLO, and SSD models based on MAE, MSE, Precision,  
Recall, and F1 Score 

 

 
 

Figure 2: Real-time person counting during a sprint race scene using YOLO, demonstrating the model’s effectiveness 
in detecting and enumerating individuals in dynamic environments. 

 

Model Dataset mAP @ IoU=0.5 Precision Recall F1-score MAE MSE 

Faster R-CNN ShanghaiTech A+B 86.4% 0.85 0.78 0.81 3.2 15.5 

YOLOv4 ShanghaiTech A+B 90.7% 0.89 0.82 0.85 2.8 12.6 

SSD ShanghaiTech A+B 88.3% 0.87 0.80 0.83 3.0 14.2 

Faster R-CNN Custom Dataset 84.9% 0.84 0.77 0.80 3.4 16.0 

YOLOv4 Custom Dataset 89.8% 0.88 0.81 0.84 2.9 13.2 

SSD Custom Dataset 87.2% 0.86 0.79 0.82 3.1 14.8 
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V. CONCLUSION AND SCOPE FOR FUTURE STUDY 

 

This study presented a systematic comparative evaluation of three leading deep object detection architectures—Faster 
R-CNN, YOLOv4, and SSD—for real-time crowd analytics. Using both the benchmark ShanghaiTech dataset and a 
custom in-house dataset representing real-world urban and event-based conditions, the models were assessed on 
multiple performance indicators, including mean average precision (mAP), precision, recall, F1-score, mean absolute 
error (MAE), mean squared error (MSE), and inference speed (FPS). 
 

The results show that YOLOv4 consistently outperformed the other two models, delivering the highest accuracy and 
recall, lowest error rates, and the fastest inference times. This makes YOLOv4 the most suitable choice for real-time 
crowd monitoring in dynamic, high-density environments, where rapid and accurate detection is critical. SSD emerged 
as a balanced alternative, offering competitive accuracy with higher inference speeds, making it suitable for 
applications where computational efficiency and deployment speed are key priorities. Faster R-CNN, while providing 
high precision and stability in moderately dense and static scenarios, had lower recall and slower inference, making it 
better suited for offline analytics and structured surveillance environments. 
 

These findings underscore the importance of context-driven model selection, where the operational requirements—such 
as density level, computational resources, and real-time constraints—must inform the choice of architecture. They also 
highlight that high-quality pre-processing, anchor box optimization, and dataset diversity significantly influence 
detection robustness in crowd analytics tasks. 
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